EPISTAR

p.1/2

ES-FEBCPE10E

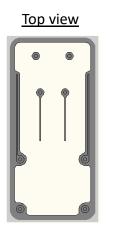
InGaN Blue LED Chip

Compatible with Solder

• High Power Density · Low Rth and Long life

Features:

Process


time

Applications:

• Backlight

> Mechanical Specification:

- (1) Dimension
 - Chip size: 10mil x 21mil (264 \pm 25 μ m x 540 \pm 25 μ m)
 - Thickness: 3.9mil (100 \pm 10 μ m)
 - Anode pad: 192 \pm 10 μ m x 162 \pm 10 μ m
 - Cathode pad: 192 \pm 10 μm x 162 \pm 10 μm
- (2) Metallization
 - Electrode pad: Au

Anode (+) 192um X 162um Gap 150um 🗲

Bottom view

Cathode (-) 🗲 192um X 162um

> Electro-optical Characteristics at 25°C: (1)

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Forward Voltage	Vf1	If = 10μΑ	1.6	-	-	V
	Vf2	lf = 20mA	-	2.8	3.0	V
Reverse Current	lr	Vr = 5V	-	-	2.0	uA
Dominant Wavelength ⁽²⁾	λd	lf = 20mA	445	-	455	nm
Spectra Half-width	Δλ	lf = 20mA	-	14	-	nm
Radiant Flux ⁽³⁾⁽⁴⁾	Ро	lf = 20mA	34	-	35	mW
			35	-	36	
			36	-	37	
			37	-	38	
			38	-	39	
			39	-	40	

Note:

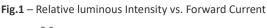
(1) ESD protection during chip handling is recommended.

(2) Basically, the wavelength span is 10nm; however, customers' special requirements are also welcome.

(3) Radiant flux is determined by EPISTAR standard.

(4) Radiant flux measurement allows a tolerance of \pm 15%.

p.2/2


> Absolute Maximum Ratings:

Parameter	Symbol	Condition	Rating	Unit
Forward DC Current	If	Ta = 25℃	≤ 60	mA
Reverse Voltage	Vr	Ta = 25℃	≤ 5	V
Junction Temperature	Tj	-	≤ 125	Ç
Storage Temperature	Tstg	Chip	-40 ~ +85	C
		Chip-on-tape/storage	5 ~ 35	C
		Chip-on-tape/transportation	-20 ~ +65	C
Temperature during Packaging	-	-	260(<5sec)*	C

Note: Maximum ratings are package dependent. The above maximum ratings were determined using by EPISTAR standard. Forward current and junction temperature will cause the damage of LEDs if over the absolute maximum ratings.

*Reflow soldering should not be done more than two times.

> Characteristic Curves:

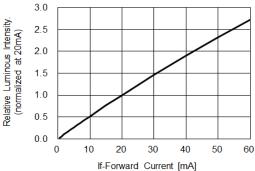
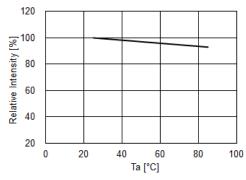
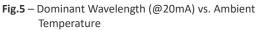




Fig.3 – Relative Intensity (@20mA) vs. Ambient Temperature

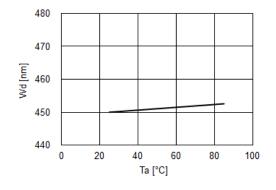


Fig.2 – Forward Current vs. Forward Voltage

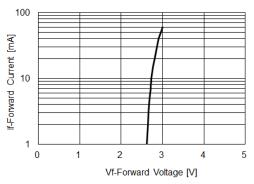


Fig.4 – Forward Voltage (@20mA) vs. Ambient Temperature

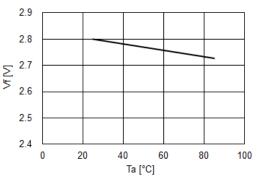
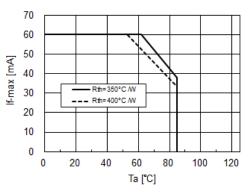



Fig.6 – Maximum Driving Forward DC Current vs. Ambient Temperature (De-rating based on Tj max. = 125°C)

