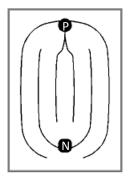
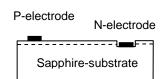
EPISTAR

ES-EMBLF30C

InGaN F-series Blue LED Chip

> Mechanical Specification:


(1) Dimension


- Chip size: 30 mil x 43 mil (760 \pm 25 μ m x 1090 \pm 25 μ m)

- Thickness: 7.9 mil (200 \pm 10 $\mu m)$ - P bonding pad: 3.1 mil (80 \pm 10 $\mu m)$ - N bonding pad: 3.1 mil (80 \pm 10 $\mu m)$

(2) Metallization

Topside P electrode: Au alloyTopside N electrode: Au alloy

Features:

- · High radiant flux
- · Long operation life
- · Lambertian radiation
- · High anti-ESD level

Applications:

Backlight

> Electro-optical Characteristics at 25°C: (1)

Parameter	Symbol		Condition	Min.	Тур.	Max.	Unit
Forward Voltage	Vf1		If = 10μA	1.6	-	-	V
	Vf2		If = 350mA	-	3.3	3.4	V
Reverse Current	Ir		Vr = 5V	-	-	2.0	μΑ
Dominant Wavelength ⁽²⁾	λd		If = 350mA	455	-	465	nm
Spectra Half-width	Δλ		If = 350mA	-	25	-	nm
Radiant Flux ⁽³⁾⁽⁴⁾	Ро	A94	- If = 350mA	600	-	650	mW
		A95		650	-	700	

Note:

- (1) ESD protection during chip handling is recommended.
- (2) Basically, the wavelength span is 10nm; however, customers' special requirements are also welcome.
- (3) Radiant flux is determined by using an Au-plated TO-can header without an encapsulant.
- (4) Radiant flux measurement allows a tolerance of $\pm 15\%$.

> Absolute Maximum Ratings:

Parameter	Symbol	Condition	Rating	Unit
Forward DC Current	If	Ta = 25°C	≤ 500	mA
Reverse Voltage	Vr	Ta = 25°C	≤ 5	V
Junction Temperature	Tj	-	≤ 125	°C
Storage Temperature	Tstg	Chip	-40 ~ +85	°C
		Chip-on-tape/storage	5 ~ 35	°C
		Chip-on-tape/transportation	-20 ~ +65	°C
Temperature during Packaging	-	- 280(<10sec)		°C

Note: Maximum ratings are package dependent. The above maximum ratings were determined using a Metal Core Printed Circuit Board (MCPCB) without an encapsulant. Stresses in excess of the absolute maximum ratings such as forward current and junction temperature may cause damage to the LED.

> Characteristic Curves:

Fig.1 - Relative luminous Intensity vs. Forward Current

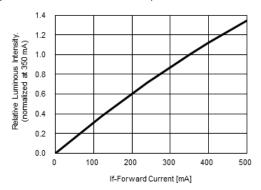


Fig.3 – Relative Intensity (@350mA) vs. Ambient Temperature

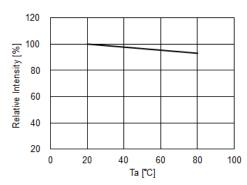


Fig.5 – Dominant Wavelength (@350mA) vs. Ambient Temperature

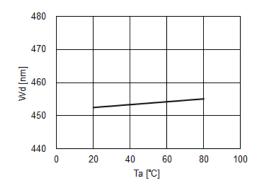


Fig.2 – Forward Current vs. Forward Voltage

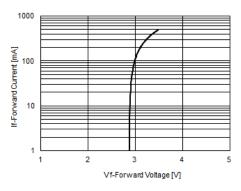
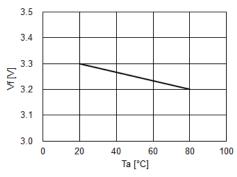
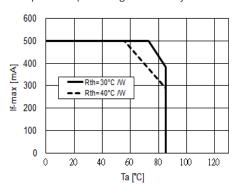




Fig.4 – Forward Voltage (@350mA) vs. Ambient Temperature

Fig.6 – Maximum Driving Forward DC Current vs. Ambient Temperature (De-rating based on Tj max. = 125°C)

