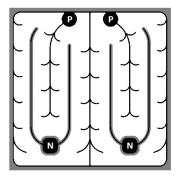
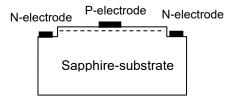


> Mechanical Specification:


(1) Dimension


- Chip size: 45 mil x 45 mil (1143 \pm 50 μ m x 1143 \pm 50 μ m)

- Thickness: 5.9 mil (150 \pm 10 $\mu m)$ - P bonding pad: 3.9 mil (100 \pm 10 $\mu m)$ - N bonding pad: 3.9 mil (100 \pm 10 $\mu m)$

(2) Metallization

Topside P electrode: Au alloyTopside N electrode: Au alloy

Features:

- · High radiant flux
- · Long operation life
- · Lambertian radiation
- · High anti-ESD level

Applications:

- · UV air purifier
- Printing
- Curing

> Electro-optical Characteristics at 25°C(1):

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Forward Voltage	Vf1	If = 10uA	1.6	-	-	V
	Vf	If = 350mA	-	3.3	3.4	V
Peak Wavelength ⁽²⁾	λр	If = 350mA	385	-	415	nm
Spectra Half-width	Δλ	If = 350mA	-	15	-	nm
Radiant Flux ⁽³⁾⁽⁴⁾	Ро	If = 350mA λp =385~400nm (20mW/bin)	440	-	580	mW
		If = 350mA λp =400~415nm (20mW/bin)	520	-	620	

Note:

- (1) ESD protection during chip handling is recommended.
- (2) Basically, the wavelength span is 30nm; however, customers' special requirements are also welco
- (3) Radiant flux is determined by using an Ag-plated TO-can header without an encapsulant.
- (4) Radiant flux measurement allows a tolerance of $\pm 15\%$.

> Absolute Maximum Ratings:

Parameter	Symbol	Condition	Rating	Unit
Forward DC Current	If	Ta = 25℃	≤ 700	mA
Junction Temperature	Tj	-	≤ 125	٥
Storage Temperature	Tstg	Chip	-40 ~ +85	٥
		Chip-on-tape/storage	5 ~ 35	٥
		Chip-on-tape/transportation	-20 ~ +65	٥
Temperature during Packaging	-	-	280(<10sec)	٥

Note: Maximum ratings are package dependent. The above maximum ratings were determined using a Metal Core Printed Circuit Board (MCPCB) without an encapsulant. Stresses in excess of the absolute maximum ratings such as forward current and junction temperature may cause damage to the LED.

> Characteristic Curves: (Peak Wavelength@395nm)

Fig.1 – Relative luminous Intensity vs. Forward Current

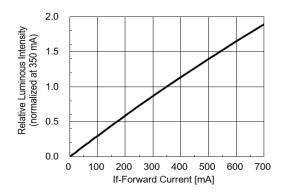


Fig.3 – Relative Intensity (@350mA) vs. Ambient Temperature

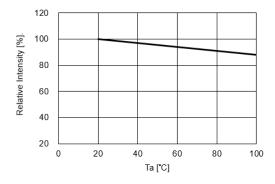


Fig.5 –Peak Wavelength (@350mA) vs. Ambient Temperature

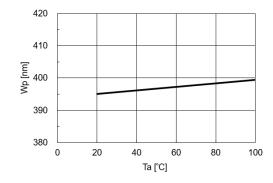


Fig.2 – Forward Current vs. Forward Voltage

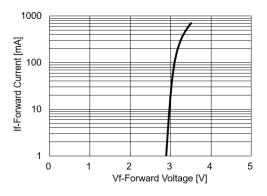


Fig.4 – Forward Voltage (@350mA) vs. Ambient Temperature

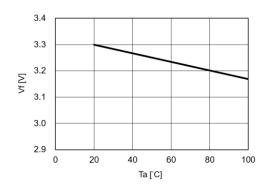
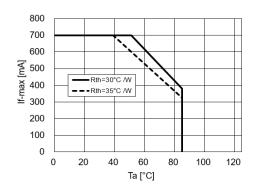



Fig.6 – Maximum Driving Forward DC Current vs. Ambient Temperature (De-rating based on Tj max. = 125°C)

> Characteristic Curves: (Peak Wavelength@405nm)

Fig.1 – Relative luminous Intensity vs. Forward Current

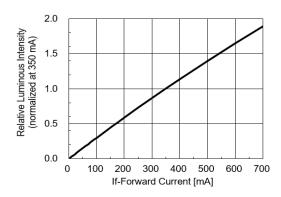


Fig.3 – Relative Intensity (@350mA) vs. Ambient Temperature

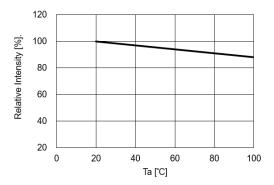


Fig.5 –Peak Wavelength (@350mA) vs. Ambient Temperature

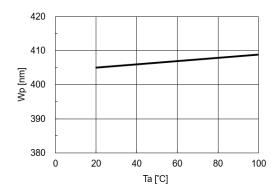


Fig.2 – Forward Current vs. Forward Voltage

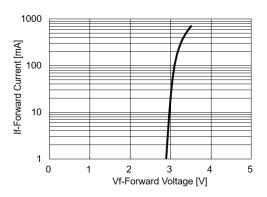
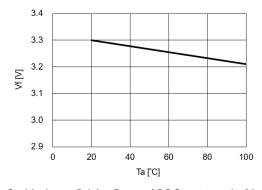
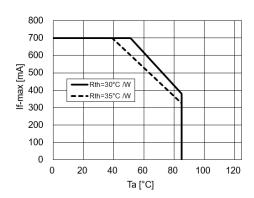




Fig.4 – Forward Voltage (@350mA) vs. Ambient Temperature

Fig.6 – Maximum Driving Forward DC Current vs. Ambient Temperature (De-rating based on Tj max. = 125°C)

