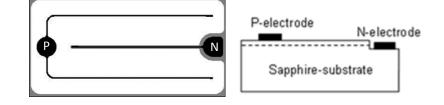
EPISTAR

InGaN F-series Blue LED Chip

> Mechanical Specification:

- (1) Dimension
 - Chip size: 14 mil x 28 mil (355 \pm 25 μm x710 \pm 25 μm)
 - Thickness: 5.9 mil (150 \pm 10 $\mu m)$
 - P bonding pad: 3.0 mil (70 \pm 10 $\mu m)$
 - N bonding pad: 2.8 mil (70 \pm 10 $\mu m)$

(2) Metallization


- Topside P electrode: Au alloy
- Topside N electrode: Au alloy

Features:

- High radiant flux
- · Long operation life
- Lambertian radiation

Applications:

• Backlight

> Electro-optical Characteristics at 25°C: (1)

Parameter	Symbol		Condition	Min.	Тур.	Max.	Unit
Forward Voltage	VfO		$If = 1\mu A$	1.8	-	-	V
	Vf2		lf = 120mA	-	3.1	3.3	V
Reverse Current	lr		Vr = 5V	-	-	2.0	μΑ
Dominant Wavelength ⁽²⁾	λd		lf = 120mA	445	-	465	nm
Spectra Half-width	Δλ		lf = 120mA	-	25	-	nm
Radiant Flux ⁽³⁾⁽⁴⁾	Ро	A68	lf = 120mA	190	-	200	
		A69		200	-	210	mW
		A70		210	-	220	

Note:

(1) ESD protection during chip handling is recommended.

(2) Basically, the wavelength span is 20nm; however, customers' special requirements are also welcome.

(3) Radiant flux is determined by using an Ag-plated TO-can header without an encapsulant.

(4) Radiant flux measurement allows a tolerance of \pm 15%.

ES-EABCF14D InGaN F-series Blue LED Chip

> Absolute Maximum Ratings:

Parameter	Symbol	Condition	Rating	Unit
Forward DC Current	If	Ta = 25°C	≤ 240	mA
Reverse Voltage	Vr	Ta = 25°C	≤ 5	V
Junction Temperature	Тј	-	≤ 125	°C
Storage Temperature	Tstg	Chip	-40 ~ +85	°C
		Chip-on-tape/storage	5 ~ 35	°C
		Chip-on-tape/transportation	-20 ~ +65	°C
Temperature during Packaging	-	-	280(<10sec)	°C

Note: Maximum ratings are package dependent. The above maximum ratings were determined using a Metal Core Printed Circuit Board (MCPCB) without an encapsulant. Stresses in excess of the absolute maximum ratings such as forward current and junction temperature may cause damage to the LED.

> Characteristic Curves:

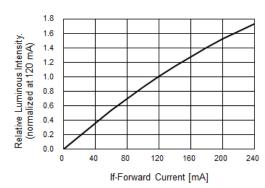


Fig.3 – Relative Intensity (@120mA) vs. Ambient Temperature

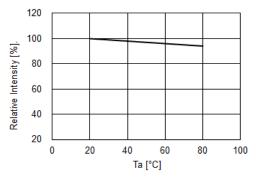


Fig.5 – Dominant Wavelength (@120mA) vs. Ambient Temperature

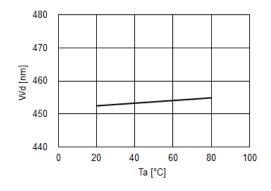


Fig.2 – Forward Current vs. Forward Voltage

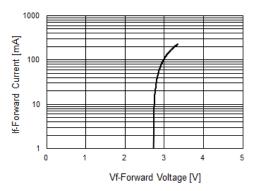


Fig.4 – Forward Voltage (@120mA) vs. Ambient Temperature

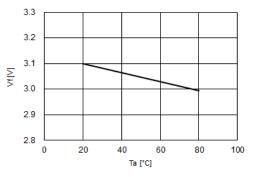
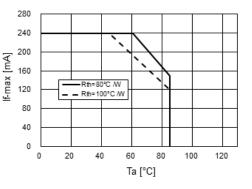



Fig.6 – Maximum Driving Forward DC Current vs. Ambient Temperature (De-rating based on Tj max. = 125°C)

