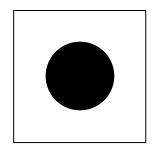
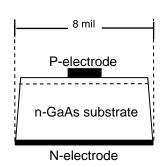
EPISTAR

ES-CARO508

AIGaInP ITO-top LED Chip

> Mechanical Specification:


(1) Dimension


- Chip size: 8 mil x 8 mil (203±25 μm x 203±25 μm)

- Thickness: 6.7 mil (170 \pm 25 μ m) - P bonding pad: 3.9 mil (100 \pm 10 μ m)

(2) Metallization

Topside P electrode: Au alloyBackside N electrode: Au alloy

Features:

- · High luminous intensity
- · ITO layer on top

Applications:

- · Mobile appliances
- · Indoor application
- · Consumer electronic

> Electro-optical Characteristics at 25°C:

Parameter	Symbol		Condition	Min.	Тур.	Max.	Unit
Samuel Malkage	Vf1		If = 10μA	1.35	-	-	V
Forward Voltage	Vf2		If = 20mA	-	2.05	2.4	V
Reverse Current	Ir		Vr = 10V	-	-	10	μΑ
Peak Wavelength	λр		If = 20mA	-	624	-	nm
Dominant Wavelength ⁽¹⁾	λd		If = 20mA	613	618	623	nm
Spectra Half-width	Δλ		If = 20mA	-	18	-	nm
Luminous Intensity ⁽²⁾⁽³⁾	Iv	E4	If = 20mA	60	-	-	- mcd
		E5		75	-	-	
		E6		90	-	-	
		E7		110	-	-	

Note:

 $(1) \ Basically, the \ wavelength \ span \ is \ 10 nm; \ however, customers' \ special \ requirements \ are \ also \ welcome.$

(2) Customers' special requirements are also welcome.

(3) Luminous intensity is measured by EPISTAR's equipment on bare chips.

This product is made and sold under one or more of the following patents: Taiwan Patent Certificate Nos.: 098998; 113696; 128153; 131010; 144415; 148677; 170789; 183481; 183846; U.S. Patent Nos.: 5,008,718; 5,164,798; 5,233,204; 5,789,768; 6,078,064; 6,057,562; 6,225,648; 6,552,367; 6,876,005, and any foreign counterparts.

> Absolute Maximum Ratings:

Parameter	Symbol	Condition	Rating	Unit
Forward DC Current	If	Ta = 25°C	≤ 30	mA
Reverse Voltage	Vr	Ta = 25°C	≤ 10	V
Junction Temperature	Tj	-	≤ 115	°C
		Chip	-40 ~ +85	°C
Storage Temperature	Tstg	Chip-on-tape/storage	5 ~ 35	°C
		Chip-on-tape/transportation	-20 ~ +65	°C
Temperature during Packaging	-	-	280(<10sec)	°C

Note: Maximum ratings are package dependent. The above maximum ratings were determined using a Printed Circuit Board (PCB) without an encapsulant. Stresses in excess of the absolute maximum ratings such as forward current and junction temperature may cause damage to the LED

> Characteristic Curves:

Fig.1 – Relative luminous Intensity vs. Forward Current

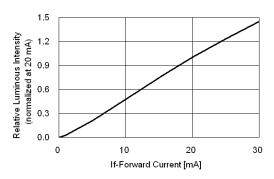
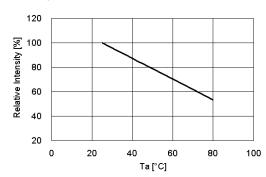



Fig.3 – Relative Intensity (@20mA) vs. Ambient Temperature

Fig.5 – Dominant Wavelength (20mA) vs. Ambient Temperature

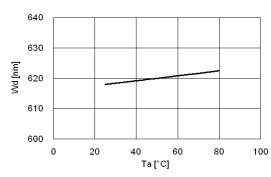


Fig.2 – Forward Current vs. Forward Voltage

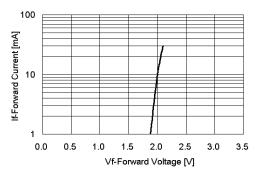
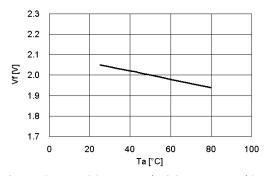
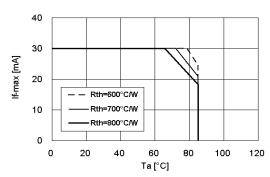




Fig.4 – Forward Voltage (@20mA) vs. Ambient Temperature

Fig.6 – Maximum Driving Forward DC Current vs. Ambient Temperature (Derating based on Tj max. = 115°C)

